Joint-Saliency Structure Adaptive Kernel Regression with Adaptive-Scale Kernels for Deformable Registration of Challenging Images
نویسندگان
چکیده
منابع مشابه
Structure matching driven by joint-saliency-structure adaptive kernel regression
For nonrigid image registration, matching the particular structures (or the outliers) that have missing correspondence and/or local large deformations, can be more difficult than matching the common structures with small deformations in the two images. Most existing works depend heavily on the outlier segmentation to remove the outlier effect in the registration. Moreover, these works do not ha...
متن کاملScale Selection of Adaptive Kernel Regression by Joint Saliency Map for Nonrigid Image Registration
Joint saliency map (JSM) [1] was developed to assign high joint saliency values to the corresponding saliency structures (called Joint Saliency Structures, JSSs) but zero or low joint saliency values to the outliers (or mismatches) that are introduced by missing correspondence or local large deformations between the reference and moving images to be registered. JSM guides the local structure ma...
متن کاملTop-Down Visual Saliency Detection in Optical Satellite Images Based on Local Adaptive Regression Kernel
This paper proposes a novel top-down visual saliency detection method for optical satellite images using local adaptive regression kernels. This method provides a saliency map by measuring the likeness of image patches to a given single template image. The local adaptive regression kernel (LARK) is used as a descriptor to extract feature and compare against analogous feature from the target ima...
متن کاملLévy Adaptive Regression Kernels
This paper describes a new class of prior distributions for nonparametric function estimation. The unknown function is approximated as a weighted sum of kernel or generator functions with arbitrary location parameters. Scaling (and other) parameters for the generating functions are also modeled as location specific and thus are adaptive, as with wavelet bases and overcomplete dictionaries. Lévy...
متن کاملHierarchical Adaptive Regression Kernels for Regression with Functional Predictors.
We propose a new method for regression using a parsimonious and scientifically interpretable representation of functional predictors. Our approach is designed for data that exhibit features such as spikes, dips, and plateaus whose frequency, location, size, and shape varies stochastically across subjects. We propose Bayesian inference of the joint functional and exposure models, and give a meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2017.2762901